*2y\$ leads to a reduction in density of atellite DNA and probably to a sative enrichment of adenine and thyine, it may be conceived that the inia part of the molecule is particularly ch in these two compounds. Alternawely, one might think that the DNA slymerase, once detached from the emplate, continues to function in the athesis of a polymer that contains mainly deoxyadenylate and deoxythyandylate (IX).

If the first explanations were true, ere should be, in theory, a decrease the molecular weight of the cytosismic DNA.\Nevertheless, this is not ecessarily trud because molecules esexially rich in adenine and thymine an once again extend themselves by rossing-over: this is facilitated by the ample homologics that probably exist among the polymers very rich in adefine and thymine. The existence of cossing-over between different molewies of cytoplasmic DNA is, moreerer, suggested by the work of Hudson and Vinograd (18) This existence is indicated by the fact that (see Table 1) the cross between a ρ^+ and a strain produces, in the absence of by treatment, new strains that have a mellite DNA density different from at of either of the parents.

The theory that we have set forth has the advantage of explaining the supmessiveness phenomenon. Mills et al. (19) have demonstrated that molecules rom an RNA virus, replicating in vitro can be subjected to a selective pressure. I this selective force is simply the accessity to replicate quickly, it evolves, after a certain number of generations, no a new type of viral RNA that multiplies much more quickly than the inial one. The greater speed of repliextion is due to the fact that the new polecule is shorter and has a greater anity for viral replicases. We think exactly the same process operates the DNA molecule mutated on the de of the yeast cell. The incomplete DNA molecules produced by pilemature etachment of the DNA polymerase an multiply more rapidly than normal clecules, thereby leading to the phecomenon of pseudodominance, otherise known as suppressiveness.

FRANCESCA CARNEVALI cituto di Fisiologia Generale, Iniversità, Rome, Italy

Giorgio Morpungo tituto Superiore di Sanità, Rome

Giorgio Tecke tuto di Fisiologia Generale, diversità

References and Notes

1. J. C. Meunolou, H. Jakob, P. P. Slonimski, in The Control of Nuclear Activity, L. Goldstein, Ed. (Prentice-Hall, Englewood Cliffs,

1967), p. 413. agai, N. Yanagishima, H. Nagai, Bac-

N.J., 1761,

2. S. Nagai, N. Yanagishinta,
teriol. Rev. 25, 404 (1961).

3. B. Ephrussi, P. l'Heritier, H. Hottinguer,
Ann. Inst. Pasteur 77, 64 (1949).

**Transport of the American Control of the Paris 256, 5644

5. B. Ephrussi, Nucleo-cytoplasmic Relations in Micro-organisms (Clarendon Press, Oxford,

H. Hottinguer, H. Roman, Proc. Nat. Acad. Sci. U.S. 41, 1065 (1955); F. Sherman and B. Ephrussi, Genetics 47, 695 (1962); B. Ephrussi, H. Jakob, S. Grandchamp, ibid.

F. Carnevali and G. Tecce, Boll. Soc. Ital. Biol. Sper. 41 (No. 20 bis), 51 (1965).
 F. Carnevali, G. Piperno, G. Tecce. Accad.

Naz. Lin. Rend. Sci. Fis. Mat. Nat. 41 (Ser. 8), 194 (1966).

J. C. Mounolou, H. Jakob, P. P. Slonimski, Biophys. Res. Commun. 24, 218 (1966).

Vander Schaffe 10. K. K. Tewari, J. Jayaraman, H. R. Mahler, ibid. 21, 141 (1965); G. Corneo, C. Moore, D. R. Sanadi, L. J. Grossman, J. Marmur, Science 151, 687 (1966).

G. Bernardi, F. Carnevali, A. Nicolajeff, G. Piperno, G. Tecce, J. Mol. Biol. 37, 493

J. Marmur, thid. 3, 208 (1961).
 G. L. Schildkraut, J. Marmur, P. Doty, ibid. 4, 430 (1962).

14. C. De Palma and G. Morpurgo, Ann. Ist. Sup. Sanità 1, 424 (1965)

K. K. Tewari, W. Vötsch, H. R. Mahler, B. Mackler, J. Mol. Biol. 20, 453 (1966).

 R. Sager and Z. Ramanis, Proc. Nat. Acad. Sci. U.S. 83, 1053 (1965).
 H. K. Schachman, J. Adler, C. M. Radding, I. R. Lehman, A. Kornberg, J. Biol. Chem. 235, 3242 (1960); O. Tuneko and A. Kornberg, ibid. 239, 259 (1964).

18. B. Hudson and J. Vinograd, Nature 216, 647

19. D. R. Mills, R. L. Peterson, S. Spicgelman, Proc. Nat. Acad. Sci. U.S. 58, 217 (1967).

Partially supported by a grant from the Consiglio Nazionale delle Ricerche, Italy.

18 September 1968

Two Unusual Unionid Hermaphrodites

Abstract. In a survey of the gonads of 97 species of North American freshwater mussels representing 59 genera, only four species were found to be hermaphroditic (monoecious). Among several other "occasional" hermaphrodites, two were unique in that the same follicles in the gonads produced eggs and sperm simultaneously. Evidently the control mechanism failed to function normally in these species [Actinonaias ellipsiformis and Villosa (formerly Micromya) iris (Lea)]. This simultaneous production of eggs and sperm is apparently quite unusual among mollusks.

In view of the rapid depletion of the mussel fauna, considerable effort has been made to collect and preserve properly relaxed and fixed specimens. Paraffin sections of 97 species, representing 59 genera, have been examined to determine to what extent these animals are monoecious or dioecious (1). The mussel fauna group is clearly dioecious (gonochoristic) with only four species (about 4 percent) found to be usually hermaphroditic (monoecious or ambisexual). Among the 1871 specimens sectioned, only one specimen each of two species, representing two genera, appeared abnormal, sperm and eggs being produced simultaneously in the same follicles.

While hermaphroditism is widespread among animals, the reasons for its development are poorly known. Several authors (2) have suggested that it may function in the survival of species living in habitats where the success of the reproductive process becomes difficult. Since most of the specimens collected in the same habitats and under similar conditions as the two featured here were normal, dioecious specimens, the theory that for these two specimens conditions were unfavorable seems unlikely. Although Purchon (3) concluded

that "in the majority of cases, hermaphroditism is an adaptive feature of evolutionary advantage to the species," he also indicated that there are perhaps stimuli other than environmental causes that account for this monoecious development. In addition to the strictly genetic factors, he indicated that the change may be initiated by the gonad itself since in the male phase there is a heavy consumption of nucleoproteins in the production of spermatozoa. The ratio between nucleoproteins and cytoplasm may be upset at a certain point so that sex-reversals are automatically affected. Whether genetic, hormonal, or cytogenetic, the reasons for the sex changes observed in freshwater mussels are, as vet, unknown,

Paraffin sections of 238 specimens of Actinonaias ellipsiformis (Conrad) have been studied. Males and females were clearly separable (108 females to 130 males). However, one specimen was an unusual hermaphrodite. Instead of having a predominance of male or female tissue and a small focus of tissue of the opposite sex (occasional hermaphrodites) as found in a number of other groups (1), tissues were extensively mixed so that it appeared that the mechanism of sex control was most

irregular (Fig. 1). Almost every possible combination from acini that are purely male or female to those that simultaneously produced sperm and ova within the same follicle occurred. The animal from which this tissue came was the oldest (estimated to be at least 10 years old) in the series of 12 males and 13 females. On the chance that senescence may have been a factor, the next largest specimen (measuring 67 mm and about 8 years old) was also examined; it was a normai male. The hermaphrodite evidently produced normal eggs since the posterior part of the outer gills still showed signs of having functioned as marsupia. This specimen, then, is a functional female hermaphrodite producing eggs and sperm simultaneously.

Although the predominantly female specimen of Villosa (formerly Micromya) iris (Lea) is not as extreme in the way the male and female phases are mixed within the gonad, the simultaneous production of both sex elements is, nevertheless, a prominent feature of its development.

Most of the eggs were developing normally (Fig. 1) and the gill structure of this specimen had the sears of spent marsupia from the previous spring. However, the walls of the acini as well as the contents of the same follicles show simultaneous spermatogenesis and oogenesis. The male aspects were not nearly as well developed as in Actinonaias ellipsiformis.

Coe (5) and Bacci (6) have classified the types of hermaphroditism in mol-

Fig. 1. Gonads of two species of freshwater mussels showing the simultaneous production of eggs and sperm in the same follicles. (A-D) Actinonaias ellipsiformis (Conrad); with (A) at low power (× 30) and with (B), (C), and (D) at high power (× 120) showing a view of three areas in the same gonad. Spermatogenesis is distributed in the walls whereas eggs are being produced from nurse cells; others of normal appearance occur in the lumen of the acinus. The same development is also shown in Villosa (formerly Micromya) iris (Lea) (E) and (F), with (E) taken at × 30 magnification and (F) at × 120. Both species were collected with a series in Michigan—Actinonaias ellipsiformis (Conrad) at Ore Creek below Hartland, Michigan, on 25 June 1959 (H. van der Schalie) and Villosa iris (Lea) at River Raisin, Sharon Hollow, Michigan, on 20 July 1962 (Norman Reigle).

lusks. Apart from the two specimens discussed here, the number of mussels with hermaphroditic tendencies are relatively few. Apart from a number of mussels that are (1) "occasional" hermaphrodites, there were no members of the subfamily Unioninae among the usual hermaphrodites, there were three among the Anodontinae, and there was one in the large subfamily Lampsilinae. When the "reasons" are considered for the usual hermaphroditic species becoming monoecious, the possible explanations are far from clear.

In the case of Anodonta imbecillis the best series are taken in impounded waters above dams. It might be argued that the impoundment may represent an evanescent situation, but it does not explain why several other species that may occur with it did not develop hermaphrodites. However, the same type of habitat also seems to be the site in which another hermaphrodite Carunculina parva, is usually found in abundance. There is now evidence that what appears to be the same, or a closely related species of Anodonta imbecillis in the south, is dioecious Lasmigona compressa (and its eastern counterpart Lasmigona subviridis) is most abundant and best adapted to very small creeks far in the headwaters of drainages. During low-water stages such rivulets would be the first to dry, placing these animals in a very precarious situation. In such habitats Lasmigon compressa is often the only mussel to be found, and one might assume her maphroditism is necessary for its survival. In this connection an effort is now being made to/obtain properly preserved and fixed animals of Uniomena tetralasmus, which also occupies an inauspicious habitat in that it invades (25 glochidia on fish) low-lying ground along rivers during flood periods. Dur ing the low-water stages, the musses remain in aestivation in the ground.

HENRY VAN DER SCHALE
Museum of Zoology, Mollusk Division
University of Michigan,
Ann Arbor 48104

References

- H. van der Schalie, Malacologia, in press.
 V. Fretter and A. Graham, in Physiology the Mollusca, K. M. Wilbur and C. M. Yozzg. Eds. (Academic Press, New York, 1964), pp. 127-136.
- 3. R. D. Purchon, Gazette King Edward V. Med. Soc. Univ. Malaya 2, 3 (1951).
- H. van der Schalle and A. van der Schalle Occas, Pap. Mus. Zool. Univ. Mich. 633 (1963).
- W. R. Coe, Quart. Rev. Biol. 18, 154 (1986)
 G. Bacci, Pubbl. Sta. Zool, Napoli 23, 8 (1951).
- 31 October 1968; revised 21 January 1969

Al ibly magi theoi

adsoi

Pol

Acc the li aguco the cu state 3 amou: ascrib in the is wid not th Thus, pothes compl system cules (**9**)., Gc cither water the m cause 1 lower surrou are ac macro: highly to accu tion m

Two the det free o intrace) techniq tion of potentic content at 25°(the ex keeping one can K+ with their fi conditic normal 🗷 medii

mediui

five ass injured netic re Assay o gel and albumin trophoto cent) the ence of at a co

The s